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Abstract

This paper explores a novel setting of temporal sentence
grounding for the first time, dubbed as dense events ground-
ing. Given an untrimmed video and a paragraph description,
dense events grounding aims to jointly localize temporal mo-
ments of multiple events described in the paragraph. Our
main motivating fact is that multiple events to be grounded
in a video are often semantically related and temporally coor-
dinated according to their order appearing in the paragraph.
This fact sheds light on devising more accurate visual ground-
ing model. In this work, we propose Dense Events Propaga-
tion Network (DepNet) for this novel task. DepNet first adap-
tively aggregates temporal and semantic information of dense
events into a compact set through a second-order attention
pooling, then selectively propagates the aggregated informa-
tion to each single event with soft attention. Based on such
aggregation-and-propagation mechanism, DepNet can effec-
tively exploit both the temporal order and semantic relations
of dense events. We conduct comprehensive experiments on
large-scale datasets ActivityNet Captions and TACoS. For
fair comparisons, our evaluations include both state-of-art
single-event grounding methods and their natural extensions
to the dense-events grounding setting implemented by us. All
experiments clearly show the performance superiority of the
proposed DepNet by significant margins.

Introduction
Over the last few years, the computer vision community
has witnessed the success of temporal sentence grounding,
which aims to localize temporal moment described by a sen-
tence description in a given video. A list of promising meth-
ods (Anne Hendricks et al. 2017; Gao et al. 2017; Wang, Ma,
and Jiang 2020; Ghosh et al. 2019; Rodriguez et al. 2020;
Wang, Huang, and Wang 2019a) have been proposed for
temporal sentence grounding. Several recent works (Hen-
dricks et al. 2018; Zhang, Su, and Luo 2019; Liu et al.
2018a; Stroud et al. 2019; Yuan et al. 2019; Zhang et al.
2020) further explore to localize more complicated sentence
containing compositional activity like “the woman takes the
book across the room to read it on the sofa” .

Most existing methods separately ground an individual
event from a video, which we argue is not an optimal op-
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Figure 1: Dense Events Grounding in Video. Given a para-
graph description, dense events grounding aims to jointly
localize described dense events in untrimmed video.

tion for contextualized description of multiple events. Com-
pared with single-sentence input, a paragraph of multiple
sentences that describe video events in time order is seem-
ingly more natural and powerful (Krishna et al. 2017; Li
et al. 2018; Zhou et al. 2018). Consider the example in Fig-
ure 1, people may be interested in a list of events around the
moment “the man with red shorts serves the ball”, and they
use a paragraph consisting of multiple sentences to describe
these events. Furthermore, events like “the man with red
shorts serves the ball.” appear several times in the video, but
people may only be interested in one of them. To avoid am-
biguity, they use a paragraph to describe not only the most
interested event but also its contextual events.

To localize dense events in a paragraph, one can simply
apply some single-event grounding model to each individ-
ual sentence in the paragraph. However, the temporal order
of dense events occurred in video is often highly correlated
with their locations in the descriptive paragraph, as demon-
strated in relevant tasks such as dense captioning (Krishna
et al. 2017; Regneri et al. 2013). Ignoring the temporal clues
in a paragraph tends to lead inferior performance in precisely



finding the temporal boundary of an event. To illustrate it,
for a pair of events in a video we investigate the consis-
tency between the visual grounding results and their tem-
poral order in the paragraph. Surprisingly, even state-of-art
single event grounding methods (Zhang et al. 2020) have a
more than 20% chance to generate visual grounding results
that contradict with the temporal order in the corresponding
paragraph, which hints a huge space for improvement via
contextual grounding.

Moreover, events described in a same paragraph are usu-
ally semantically related to one another. As shown in Fig-
ure 1, localizing sentence event “the man serves the ball
again” requires to understand another sentence event “the
man with red shorts serves the ball”. Jointly grounding them
can utilize their contextual semantic relation, which also
contributes to precise time boundary prediction.

To this end, we introduce a novel setting of temporal sen-
tence grounding for the first time in the literature, termed as
dense events grounding. Given an untrimmed video and a
paragraph of sentence descriptions, the goal of dense events
grounding is to jointly localize temporal moments described
by these sentence descriptions. Rather than grounding each
event independently, dense event grounding requires to ex-
ploit temporal order and semantic relations of dense events
for more accurate localization.

To achieve this, we propose a novel dense events ground-
ing model called Dense Events Propagation Network (Dep-
Net). Our main idea is to adaptively aggregate temporal
and semantic information of dense events into a compact
set, then selectively propagate the aggregated information to
each single event. More specifically, DepNet first generates
visual-semantic moment proposals for each single event in
the paragraph description. A dense events aggregation mod-
ule then aggregates these moment proposals into a compact
set through a second-order attention pooling. For each mo-
ment proposal, a dense events propagation module then se-
lects a desired subset of features from the compact set, and
propagates the selected features to the proposal through soft
attention. In this way, the moment proposals of each single
event can perceive and exploit the temporal order informa-
tion and context semantic relation from other events in the
paragraph description.

Our contributions are summarized as follows:
• We define a new task dense events grounding and develop

Dense Events Propagation Network (DepNet) as the first
attempt of tackling this task. Particularly, DepNet adopts a
novel aggregation-and-propagation scheme, which effec-
tively enables context-guided visual grounding.

• Experiments on large-scale datasets ActivityNet Captions
and TACoS show that the proposed DepNet outstrips sev-
eral state-of-the-art single-event grounding methods and
their dense-events variants (implemented by us for fair
comparisons) by significant margins.

Related Work
Single Event Grounding
Temporal sentence grounding of single event in video is re-
cently introduced by (Anne Hendricks et al. 2017; Gao et al.

2017), which aims to determine the start and end time points
of single event given by a query sentence. (Anne Hendricks
et al. 2017) proposes a moment context network to jointly
model text query and video clips. (Gao et al. 2017) proposes
cross-modal localizer to regress action boundary for candi-
date video clips. (Liu et al. 2018b,c) then advice to apply at-
tention mechanism to highlight the crucial part of visual fea-
tures or query contents. (Wang, Huang, and Wang 2019b)
then develops a semantic matching reinforcement learning
framework to reduce the large visual-semantic discrepancy
between video and language.

Several recent works (Zhang et al. 2019a, 2020; Wang,
Ma, and Jiang 2020) propose to model temporal dependen-
cies within sentence to closely integrate language and video
representation. (Zhang et al. 2019a) models temporal de-
pendencies as a structured graph and devises an iterative
graph adjustment network for temporal structural reasoning.
(Zhang et al. 2020) proposes 2D Temporal Adjacent Net-
works to model the temporal relations between video mo-
ments by a two-dimensional map. (Wang, Ma, and Jiang
2020) uses a lightweight semantic boundaries prediction
branch to aggregate contextual information and models the
relationship between the referent and its neighbors.

Some recent works (Zhang, Su, and Luo 2019; Stroud
et al. 2019; Zhang et al. 2019b) further utilize compositional
property of query sentence and decompose sentence as mul-
tiple components for better temporal reasoning. (Zhang, Su,
and Luo 2019) proposes temporal compositional network
where a tree LSTM decomposes a sentence into three de-
scription main event, context event. Similarly, (Stroud et al.
2019) first grounds atomic sub-events to short video seg-
ments and then establishes the temporal relationships be-
tween these segments. (Zhang et al. 2019b) develops a syn-
tactic Graph Convolution Network to leverage the syntactic
structure of sentence and a multi-head self-attention module
to capture long-range dependencies from video context.

Although compositional activity may be considered, only
single event with single sentence description is grounded
in the settings of existing works. Unlike this, the proposed
dense events grounding aims to jointly localize multiple
events described by a paragraph, which requires to the model
temporal order and semantic relations of the dense events.

Dense Events Understanding in Video
Understanding dense events in video has been popular in
recent years. (Krishna et al. 2017) introduces the task of
dense video captioning which aims to both detecting and
describing dense events in a video. They use contextual in-
formation from past and future events to jointly describe all
events. (Li et al. 2018; Zhou et al. 2018) propose a joint
and global optimization framework of detection and cap-
tioning in an end-to-end manner for dense video caption-
ing. (Wang et al. 2018) develops a hierarchical reinforce-
ment learning algorithm for dense video captioning where a
high-level manager module learns to design sub-goals and a
low-level worker module recognizes the primitive actions to
fulfill the sub-goal. (Duan et al. 2018) further extends dense
events captioning in a weakly supervised setting and formu-
late the problem as dual process of event captioning and sen-
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Figure 2: The framework of our proposed Dense Events Propagation Network. It consists of a Language Encoder, a Video
Encoder, a Visual-Semantic Proposals Generator, a Dense Events Aggregation and Propagation Module. In the Dense Events
Aggregation and Propagation Module, visual-semantic information of dense events is aggregated into a compact set, then
selectively propagated to each single event. Only the first and last sentence queries are visualized.

tence localization. The dense captioning task in these papers
is to describe dense events in the video with a paragraph. In
contrast, our dense events grounding task can be viewed as
the inverse problem of dense captioning.

(Bojanowski et al. 2015) proposes to grounding multiple
sentences in video with weakly-supervised settings. These
sentence events are assumed to not overlap with each other,
which does not generalize to most video paragraph descrip-
tions. (Shao et al. 2018) proposes a novel task to retrieve
paragraph query in video collections and then localize these
events. They propose a find-and-focus framework where the
top-level matching narrows the search while the part-level
localization refines the results. Our task is different from
their events localization step since we jointly localize dense
events within the video while they treat each event indepen-
dently.

Method
Problem Formulation
Given an untrimmed video V and K sentence descriptions
{S1, S2, · · · , SK} with temporal order, our goal is to jointly
localize temporal moments {T1, T2, · · · , TK} described by
these sentences. More specifically, the video is presented as
a sequence of frames V = {vi}LV

i=1 where vi is the feature
of i-th frame and LV is the frame number of the video. The
k-th sentence description Sk is presented as Sk = {ski}Lk

i=1
where ski represents i-th word in the sentence and Lk de-
notes the total number of words. The k-th temporal moment
Tk consists of start and end time point of the event in the
video.

Dense Events Propagation Network
As illustrated in Figure 2, our proposed Dense Events Propa-
gation Network (DepNet) consists of four main components:
a language encoder, a video encoder, a visual-semantic
proposal generator, and a dense-events aggregation-and-
propagation module. This section will elaborate on the de-
tails of each component.

Language Encoder Given an input of a natural language
paragraph query, the goal of language encoder is to encode
the sentences in the paragraph such that moments of interest
can be effectively retrieved in the video. Our language en-
coder extracts feature embedding fSk of each sentence Sk
in the paragraph descriptions {S1, S2, · · · , SK} separately.

Instead of encoding each word with a one-hot vector or
learning word embeddings from scratch, we rely on word
embeddings obtained from a large collection of text docu-
ments. In more details, each word ski in the sentence Sk
is first encoded into Glove word embedding (Jeffrey Pen-
nington and Manning 2014) as wki. Then the sequence of
word embedding {wki}Lk

i=1 is fed to an LSTM (Hochreiter
and Schmidhuber 1997). The last hidden state of LSTM is
passed to a single fully-connected layer to extract the final
sentence feature fSk ∈ RdS . All parameters of the LSTM
and fully-connected layer are shared across different sen-
tences in the paragraph.

Video Encoder Video encoder aims to obtain high-level
visual representations of video moment proposals from raw
input frames. Specifically, the input video is first segmented
into small clips where each video clip contains T frames. A
fixed-interval sampling is performed over these video clips
to obtain N video clips. For each sampled video clip, we
extract a sequence of basic C3D features V = {vi}Ni=1 with
a pretrained C3D (Tran et al. 2015) Network.

The visual feature embeddings for moment proposals are
constructed from these basic C3D features. For a moment
proposal (a, b) with start point at a and end point at b, we
apply boundary-matching operation BM (Lin et al. 2019)
over all C3D features covered by this proposal to get the
feature embedding:

f̃Vab = BM({vi}bi=a). (1)

The boundary-matching operation can efficiently generate
proposal-level feature from basic clip-level feature, through
a series of bilinear sampling and convolutional operations.
More algorithmic details are omitted here and can be re-



ferred to (Lin et al. 2019). f̃Vab is passed through a fully-
connected layer to obtain the final feature embedding fVab ∈
RdV for the moment proposal (a, b). Essentially, this ex-
tracted feature fVab summarizes spatial-temporal patterns
from raw input frame and thus represents the visual struc-
ture of the moment proposal.

Visual-Semantic Proposals Generator Visual-semantic
proposals generator constructs visual-semantic features of
moment proposals for each sentence query in the paragraph
description. Specifically, video moment feature fVab for
all possible moment proposals are computed according to
Eq (1) where 1 ≤ a ≤ b ≤ N .

The features of the visual modality and language modality
are then fused to generate visual-semantic for each sentence
in the paragraph. To interact the language feature of k-th
sentence fSk with video moment feature fVab , we multiply
fSk with video moment clip feature fVab and then normalize
the fused feature M̂k

ab with its L2 norm, namely

M̂k
ab = fVab � fSk ,

Mk
ab = M̂k

ab/||M̂k
ab||2,

(2)

where � denotes Hadamard product.
Inspired by positional encoding of tokens in natural lan-

guage processing (Vaswani et al. 2017; Devlin et al. 2018),
we encode the relative positions of each proposal to better
perceive the temporal information. We consider three sorts
of the relative positions, i.e., the start point a, end point b
and sentence order k. These positions are encoded by sine
and cosine functions of different frequencies:

PEpos,i =

{
sin(pos/10000i/dpos), if i is even
cos(pos/10000i/dpos), otherwise

(3)

where pos can be any one of the three relative positions, d is
the number of dimensions and i denotes the i-th dimension.

Then these three sorts of positional feature PE ∈ R3dpos

are concatenated with Mk
ab and transformed by 1 × 1 con-

volutional layer. The output of the convolutional layer sum-
marizes visual-semantic patterns and relative positional in-
formation of the proposals for each sentence query in the
paragraph. For simplicity, we still refer it as Mk

ab.
Since the number of moment proposals is large, follow-

ing (Zhang et al. 2020) we adopt sparse sampling strategy to
remove the redundant moment proposals which have large
overlaps with the selected one. Such sampling strategy can
effectively reduce the computational cost and the number of
moment proposals.

Dense Events Aggregation and Propagation Dense
event grounding requires to exploit temporal order and se-
mantic relations of sentence events for more accurate local-
ization. Inspired by global feature modelling in image/video
classification (Chen et al. 2018), we design dense events
aggregation and propagation modules. Specifically, a dense
events aggregation module first perceives the entire visual-
semantic proposals of sentence queries, and adaptively ag-
gregates global information through a second-order atten-
tion pooling. Then a dense events propagation module is

cascaded to selectively propagates the aggregated global in-
formation to each event proposal with soft attention.

In more details, the dense events aggregation mod-
ule adaptively aggregates visual-semantic feature M =
{Mk

ab}(1 ≤ a ≤ b ≤ N, 1 ≤ k ≤ K) of entire
moment proposals into a compact set of global features
A = {a1, · · · ,an}. To do this, it first transforms M to
G = {g1, · · · ,gn} by a convolutional layer g as attention
weight to densely attend each moment proposal for global
information aggregation in M . Each ai is then calculated by
second-order attention pooling operation as:

ai = f(M) softmax(gi)
>, (4)

where f is another convolutional layer to transform M
and softmax is used to normalized gi to a valid attention
weight. Above second-order attention pooling adaptively se-
lects informative moment proposals among multiple sen-
tence events and aggregates visual-semantic information of
them.

Then the dense events propagation module selectively
propagates the global features in the compact set A to each
proposal via soft attention. More specifically, a subset of fea-
ture vectors are dynamically selected from A for each pro-
posal and propagated to the proposal with soft attention as:

M̃k
ab =

n∑
j=1

hkabjaj = Ahab, (5)

where h is the attention weight and satisfies
∑n
j=1 h

k
abj = 1.

Similar to the generation of the attention weight g in the ag-
gregation module, h is generated by applying a convolution
layer and a followed softmax normalizer on M . In this way,
each moment proposal can perceive moment contexts from
other sentence events which are complementary to itself.

Such an aggregation and propagation design enables the
model to not only perceive the entire moment proposals
of the event itself, but also perceive the moment contexts
from other events, resulting in learning the distribution of
the multi-events.

Finally we pass the output of propagation module {M̃k
ab}

to a fully-connected layer and a sigmoid layer to generate
a temporal-sentence score map {pkab}. And each value pka,b
in temporal-sentence score map denotes predicted matching
score of the temporal moment (a, b) for k-th sentence. The
maximum of k-th score map pk corresponds to the ground-
ing result for the k-th sentence Sk.

Training Loss
Our training sample consists of an input video, a paragraph
query {S1, S2, · · · , SK} and a set of temporal annotations
{T1, T2, · · · , TK} associated with the sentences in the para-
graph. During training, we need to determine which tempo-
ral moment in the temporal-sentence score map corresponds
to the annotations and train the model accordingly.

Instead of hard label, we assign each moment proposal
with a soft label according to its overlap with the an-
notations. Specifically, for each moment in the temporal-
sentence score map, we compute the IoU score IoUkab be-
tween its temporal boundary (a, b) and the annotation of the



k-th sentence Tk. Then a soft ground truth label gtkab is as-
signed to it according to IoUkab:

gtkab =


0 IoUkab ≤ µmin,
IoUk

ab−µmin

µmax−µmin
µmin < IoUkab < µmax,

1 IoUkab ≥ µmax,
(6)

where µmin and µmax are two thresholds to customize the
distribution of soft labels.

For each training sample, the model can be trained in an
end-to-end manner with a binary cross entropy loss, which
is defined as:
L = −

∑
(a,b)∈C

gtkab log(p
k
ab)+(1− gtkab) log(1−pkab), (7)

where C = {(a, b)|1 ≤ a ≤ b ≤ N} is the set of all valid
moment proposal boundaries.

Experiments
Dataset
ActivityNet Captions ActivityNet Captions (Krishna
et al. 2017) consists of 19,209 untrimmed videos. Each
video includes multiple sentence descriptions with temporal
order and corresponding moment boundary annotations. The
contents of video are diverse and open. It is originally built
for dense-captioning events (Krishna et al. 2017) and lately
introduced for temporal grounding with single sentence set-
ting. For fair comparison, following the experimental setting
in single sentence grounding (Zhang et al. 2020; Yuan et al.
2019), we use val 1 as validation set and val 2 as testing
set. There are 37,417, 17,505, and 17,031 moment-sentence
pairs in the training, validation and testing set, respectively.

TACoS TACOS (Regneri et al. 2013) consists of 127
videos. Each video has several paragraph descriptions and
temporal annotations. It is developed on MPII Composi-
tive (Rohrbach et al. 2012). The main video theme is limited
to cooking scenes, thus lacking diversity. Compared with
ActivityNet Captions, Videos in the TACoS benchmark gen-
erally has longer duration and shorter moments. Following
the standard data splitting, there are totally 10,146, 4,589
and 4,083 moment-sentence pairs in the training, validation
and testing set, respectively.

Evaluation Metrics
The commonly-adopted evaluation metric in single-event
grounding (Zhang et al. 2020; Yuan et al. 2019) is known
to be “Recall@N ,IoU=θ ”. For each sentence query in the
paragraph, we calculate the Intersection over Union (IoU)
between grounded temporal segment and the ground truth.
“Recall@N ,IoU=θ ” represents the percentage of top N
grounded temporal segments that have at least one segment
with higher IoU than θ. For ease of comparisons, we bor-
row the identical evaluation metric in our proposed novel
multi-event setting. There are specific settings of N and θ
for different datasets. To fairly compare with previous sin-
gle event grounding methods, we follow (Zhang et al. 2020;
Yuan et al. 2019) to report the results as N ∈ {1, 5} with
θ ∈ {0.3, 0.5, 0.7} for ActivityNet Captions dataset, and
N ∈ {1, 5} with θ ∈ {0.1, 0.3, 0.5} for TACoS dataset.

Implementation Details
For fair comparison, we use pretrained CNN (Tran et al.
2015) as previous methods to extract C3D video features on
both datasets. And we use Glove (Jeffrey Pennington and
Manning 2014) word embeddings pretrained on Common
Crawl to represent each word in the sentences. A three-layer
LSTM is applied to word-embeddings to obtain the sentence
representation. The channel numbers of sentence feature and
video proposal feature dS , dV are all set to 512 . We set the
dimension of positional feature dpos to 128 and the size of
compact set n to 512. The number of sampled clips N is set
to 32, 64 for ActivityNet Captions and TACoS respectively.
For BM operations in the video encoder, we set sampling
number of each proposal to 16, 32 for ActivityNet Captions
and TACoS respectively.

During training, We use Adam (Kingma and Ba 2014)
with learning rate of 1 × 10−4, the momentum of 0.9 and
batch size of 4 as optimization algorithm. For each train-
ing sample, we randomly sample K (2 ≤ K ≤ 8) sentence
queries with temporal order and apply padding them with ze-
ros to 8 sentences. Such random sampling strategy reduces
model to overfit to moment prior of dense events. We only
calculate the values on the valid location and do not take
zero-padding into calculation. For binary cross entropy loss,
the scaling thresholds µmin and µmax are set to 0.5 and 1.0
for ActivityNet Captions and 0.3 and 0.7 for TACoS.

During inference, we set the whole paragraph as query
description if the annotated paragraph has less than 8 sen-
tences. For annotated paragraph queries with more than 8
sentences, we split them to multiple sub-paragraphs to meet
the limitation of maximum 8 sentences. We independently
choose the moment proposals with the highest confidence
score for each sentence as final result. If we need to select
multiple moment localizations per sentence (i.e. for R@5),
Non Maximum Suppression (NMS) with a threshold of 0.5
is applied to remove redundant candidates.

Competing Methods
In this subsection, we compare the proposed DepNet model
with state-of-the-art methods of single event grounding and
two competitive baseline models of dense sentence ground-
ing. We refer the proposed model as DepNet.

The compared single event grounding methods are listed
as followings. CTRL (Gao et al. 2017): Cross-model Tem-
poral Regression Localizer. MCN (Anne Hendricks et al.
2017): Moment Context Network. ACRN (Liu et al. 2018b):
Attentive Cross-Model Retrieval Network. QSPN (Xu et al.
2019): Multilevel Language and Vision Integration. ACL-
K (Ge et al. 2019): Activity Concepts based Localizer.
GDP (Chen et al. 2020): Graph-FPN with Dense Predic-
tions. SAP (Chen and Jiang 2019): A two-stage approach
based on visual concept mining. SCDM (Yuan et al. 2019):
Semantic Conditioned Dynamic Modulation. CBP (Wang,
Ma, and Jiang 2020): Contextual Boundary-aware Predic-
tion. CMIN (Zhang et al. 2019b): Cross-Modal Interaction
Networks. 2D-TAN (Zhang et al. 2020): 2D Temporal Ad-
jacent Network.

The current literature of temporal grounding is dominated
by single-event methods. For fair comparison, we carefully



Table 1: Performance Evaluation Results on the ActivityNet
Captions Dataset (N ∈ {1, 5} and θ ∈ {0.3, 0.5, 0.7}).

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

MCN 39.35 21.36 6.43 68.12 53.23 29.70
CTRL 47.43 29.01 10.34 75.32 59.17 37.54
ACRN 49.70 31.67 11.25 76.50 60.34 38.57
QSPN 52.13 33.26 13.43 77.72 62.39 40.78
GDP 56.17 39.27 − − − −
CBP 54.30 35.76 17.80 77.63 65.89 46.20

SCDM 54.80 36.75 19.86 77.29 64.99 41.53
CMIN 63.61 43.40 23.88 80.54 67.95 50.73

2D-TAN 59.45 44.51 26.54 85.53 77.13 61.96
BS 62.53 46.43 27.12 − − −

3D-TPN 67.56 51.49 30.92 87.94 81.53 65.86
DepNet 72.81 55.91 33.46 90.08 83.82 68.80

Table 2: Performance Evaluation Results on the TACoS
Dataset (N ∈ {1, 5} and θ ∈ {0.1, 0.3, 0.5}).

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

MCN 3.11 1.64 1.25 3.11 2.03 1.25
CTRL 24.32 18.32 13.30 48.73 36.69 25.42
ACRN 24.22 19.52 14.62 47.42 34.97 24.88
QSPN 25.31 20.15 15.23 53.21 36.72 25.30
ACL-K 31.64 24.17 20.01 57.85 42.15 30.66

SAP 31.15 − 18.24 53.51 − 28.11
GDP 39.68 24.14 − − − −
CBP − 27.31 24.79 − 43.64 37.40

SCDM − 26.11 21.17 − 40.16 32.18
CMIN 32.48 24.64 18.05 62.13 38.46 27.02

2D-TAN 47.59 37.29 25.32 70.31 57.81 45.04
BS 48.46 38.14 25.72 − − −

3D-TPN 55.05 40.31 26.54 78.18 63.60 48.23
DepNet 56.10 41.34 27.16 79.59 64.74 48.75

devise two competitive baseline models for dense-events
grounding, including Beam Search (BS) and 3D Temporal-
Paragraph Network (3D-TPN) (a natural extension of the
state-of-the-art single-event model 2D-TAN fully imple-
mented by us). In particular, the BS model first localizes
each sentence in the paragraph independently with a base
single event grounding model, then applies beam search on
the top k grounding results of each event as post processing,
such that final dense events grounding results match the tem-
poral order. We set k to 8 in the experiments and choose 2D-
TAN as the base model for constructing a strong baseline in
dense event grounding. In specific, 3D-TPN model first con-
structs two-dimensional temporal-sentence feature map as in
2D-TAN for each sentence in paragraph, formulates them as
three-dimensional temporal-paragraph map according to the
sentence order and then applies a stack of 3D-convolutional
layers on the formulated 3D temporal-paragraph map to per-
ceive the temporal order and semantic relations among dense
events. Last, a fully-connected layer is applied on the output
of 3D-convolution to get the dense events grounding result.
Since 3D-TPN is a natural extension of 2D-TAN, more de-
tails of its implementation are omitted here and can be re-
ferred to (Zhang et al. 2020).

Performance Comparisons
Table 1 and Table 2 show the performance comparisons be-
tween DepNet and all above-mentioned baseline methods
on ActivityNet Captions and TACoS, respectively. From the

tables, all three proposed dense events grounding methods
outperform single event grounding methods with a clear
margin. This verifies the superiority of the proposed dense
events grounding setting. Furthermore, DepNet achieves the
best performance among all the methods, which verifies the
effectiveness of dense events aggregation and propagation
mechanism in DepNet.

In more details, DepNet achieves about 22.3%, 25.6% and
23.4% higher evaluation scores than the best single event
grounding method 2D-TAN in term of R1@0.3, R1@0.5
and R1@0.7 on ActivityNet Captions. And DepNet achieves
2D-TAN about 17.9%, 10.9% and 7.3% higher scores than
2D-TAN in term of R1@0.1, R1@0.3 and R1@0.5 on
TACoS. The other two dense events grounding models also
achieves much better performance than the state-of-the-art
single event grounding methods on both datasets. For exam-
ple, BS and 3D-TPN achieves 3 and 8 points higher than
the best single event grounding method 2D-TAN in term of
R1@0.3 on ActivityNet Captions, and 1 and 7 points higher
than 2D-TAN in term of R1@0.1 on TACoS. This verifies
the superiority of the proposed dense events grounding set-
ting, which can use the information temporal order and se-
mantic relations among the dense events compared to exist-
ing single event grounding setting.

Moreover, we compare dense events grounding models
with intra-sentence context based single event grounding
models, including QSPN, GDP, CBP and CMIN. These ap-
proaches explicitly model the context moment within the
single sentence and achieves better results than the sim-
ple sliding window based single events grounding methods,
i.e., CTRL, MCN and ACL-K. However, these approaches
achieve clearly inferior results than the proposed DepNet.
For example, even the best one of them achieves about 9
points lower than DepNet in term of R1@0.3 on ActivityNet
Captions, and about 8 points lower than DepNet in term of
R1@0.1 on TACoS. The performance gap serves as strong
evidence for the necessity of joint multi-event grounding.

Last, we compare DepNet with two dense events ground-
ing baselines BS and 3D-TPN. In term of R1@0.3, Dep-
Net outperforms BS and 3D-TPN more than 10 and 3 points
on ActivityNet Captions, and more than 6 and 1 points on
TACoS, respectively. In term of R5@0.3, DepNet outper-
forms 3D-TPN more than 2 points on ActivityNet Captions,
and more than 1 points on TACoS. As stated before, 3D-TPN
is a natural extension of 2D-TAN. It adopts vanilla stacked
temporal convolutions for perceiving information of dense
events on the temporal-paragraph map. This represents the
standard treatment in the literature of modern video anal-
ysis methods. We attribute its inferior performance to the
relatively low efficacy in cross-event communication (i.e.,
proposals with distant locations on the map can only be per-
ceived after several layers of temporal convolutions). In con-
trast, our proposed aggregation-and-propagation scheme in
DepNet treats different proposals equally and leads to better
usage of information from dense events.

Ablation Study
In this section, we conduct ablation studies on ActivityNet
Captions to analyze the contributions of our proposed Dep-



A man is seen speaking to a woman while 

showing her how to sharpen a knife

The woman then uses the tool to sharpen the 

knife with the man's help

He points to the knife and shows her 

again how to do it properly.
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Figure 3: Qualitative prediction examples of our proposed model. The first row shows the ground-truths for the given paragraph
queries, and the second and third row shows the grounding results of 2D-TAN and our DepNet.

Table 3: Performance evaluation results of ablation model
on the ActivityNet Captions dataset.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

w/o. AP 62.86 46.76 28.08 86.19 78.16 60.52
w/o. PE 58.29 43.63 26.64 85.66 76.58 60.12

w/o. AP, PE 58.35 42.99 25.12 85.41 76.49 59.95
full 72.81 55.91 33.46 90.08 83.82 68.80

Net method. Specifically, we re-train our model with the
following settings 1) DepNet (w/o. AP): the dense events
aggregation and propagation module is dropped, 2) DepNet
(w/o. PE): the positional encoding of moment proposals is
dropped, 3) DepNet (w/o. AP,PE): both positional encod-
ing of moment proposals and dense events aggregation and
propagation module are dropped.

Table 3 shows the performance comparisons of our pro-
posed full model DepNet (full) with respect to these ab-
lations on the ActivityNet Captions dataset. DepNet (full)
outperforms all ablation models on ActivityNet Captions,
which demonstrates the positional encoding, dense events
aggregation and propagation module is critical to dense
events grounding in videos. Without considering the dense
events aggregation and propagation module, the perfor-
mance of the model DepNet (w/o. AP) degenerates dramat-
ically compared to DepNet (full). It shows that dense events
aggregation and propagation module is effective to model
temporal order and semantic relations of dense events. Dep-
Net (w/o. PE) improves the grounding performance com-
pared to DepNet (w/o. AP,PE), shows that modeling the se-
mantic dependencies between moment proposals can help.
However, the improvement is limited compared to Dep-
Net (full). This is mainly because without positional encod-
ing, the temporal information of the moment proposals is
dropped by the process of dense events aggregation. This
also verifies the importance of modelling the temporal order
of dense events.

Moreover, we explore the impact of the number of sen-
tences in the paragraph descriptions as shown in Figure 4.
Specifically, we evaluate the same well-trained DepNet on
the ActivityNet Captions Dataset with different number of
sentences in the paragraph descriptions. Here we select
“R@1,IoU=0.3” and “R@1,IoU=0.5” as evaluation metrics.
As can be seen, both metrics achieve higher values when the
number of sentences increases. This shows that the temporal
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Figure 4: Impact of the number of sentences in the paragraph
descriptions on the ActivityNet Captions Dataset.

order and semantic relations of dense events can help each
other to obtain more accurate grounding. We further note
that when the number of sentences is larger than 5, the im-
provement is almost saturated. This could be due to that sen-
tences with more intervals are less semantically relevant and
provide less information to help the dense events grounding.

Qualitative Analysis
To qualitatively validate the effectiveness of the DepNet
method, we display several typical examples of dense events
grounding. Figure 3 shows the grounding results of the Dep-
Net method and the single event grounding method 2D-TAN
on ActivityNet Captions. DepNet is capable of grounding
a diverse set of events including the one requiring strong
temporal dependencies with other sentences “he points to
the knife and shows her again how to do it properly”. Dep-
Net can exploit the temporal order and semantic relations
of dense events based on the aggregation and propagation
mechanism. This makes it perform better than the 2D-TAN.

Conclusion
This work introduces a novel task dubbed as dense events
grounding, a more challenging task than traditional single-
event event grounding. To effectively capture the temporal
context in the accompanying paragraph of a video, we here
propose DepNet that has the unique trait of an aggregation-
and-propagation scheme. Evaluations on two large-scale
video benchmarks against a large spectrum of baselines
(both state-of-the-art single-event models and their natural
extensions to the multi-event setting) clearly demonstrate the
superiority of DepNet. We strongly believe that our pilot re-
search on this novel task will inspire more works on tempo-
ral context modeling in visual grounding.
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